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Abstract

Background: Infectious disease forecasting aims to predict characteristics of both seasonal epidemics and future
pandemics. Accurate and timely infectious disease forecasts could aid public health responses by informing key
preparation and mitigation efforts.

Main body: For forecasts to be fully integrated into public health decision-making, federal, state, and local officials
must understand how forecasts were made, how to interpret forecasts, and how well the forecasts have performed
in the past. Since the 2013–14 influenza season, the Influenza Division at the Centers for Disease Control and
Prevention (CDC) has hosted collaborative challenges to forecast the timing, intensity, and short-term trajectory of
influenza-like illness in the United States. Additional efforts to advance forecasting science have included influenza
initiatives focused on state-level and hospitalization forecasts, as well as other infectious diseases. Using CDC
influenza forecasting challenges as an example, this paper provides an overview of infectious disease forecasting;
applications of forecasting to public health; and current work to develop best practices for forecast methodology,
applications, and communication.

Conclusions: These efforts, along with other infectious disease forecasting initiatives, can foster the continued
advancement of forecasting science.
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Background
A forecast is a quantitative, probabilistic statement about
an unobserved event, outcome, or trend and its sur-
rounding uncertainty, conditional on previously ob-
served data (N. Reich, personal communication).
Perhaps the most familiar forecasts are for daily weather
and severe storms, where accurate forecasts are used to
protect life and property [1–3]. Similarly, decision

makers could potentially use infectious disease forecasts
to prepare for and prevent illness, hospitalization, and
death, as well as the economic burden, experienced dur-
ing infectious disease epidemics [4–6].
During a public health emergency response, leaders

must make numerous critical decisions [4, 7]. These de-
cisions are often reactive, occur in a rapidly changing
environment where there is little or incomplete informa-
tion available, and may be biased [8, 9]. Although trad-
itional surveillance systems provide regular data updates,
these systems are inherently retrospective and delayed,
limiting their utility for real-time decision making and
planning. Nowcasting – estimating present conditions or
those immediately expected – and forecasting could help
fill these gaps by providing guidance for the utility, scale,
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and timing of prevention strategies [4]. For example, dur-
ing an influenza season, the coordination and communica-
tion of prevention strategies – such as vaccination and
antiviral treatment – supports the deployment and man-
agement of important public health resources [7].
However, the use of infectious disease forecasts for de-

cision making is challenging because most existing infec-
tious diseases forecasts are not standardized, not
validated, and can be difficult to communicate to non-
scientific audiences. Forecasts may fail to address out-
comes that are relevant for public health responders [10].
To address these limitations, the Centers for Disease Con-
trol and Prevention’s (CDC) Influenza Division (CDC/ID)
and Division of Vector-Borne Diseases launched the Epi-
demic Prediction Initiative (EPI) in December 2014 [11,
12]. By bringing together public health officials and re-
searchers from academia, industry, and government in an
open forecasting project, EPI develops tools to address
specific forecasting problems relevant to public health.
EPI has hosted several challenges for predicting trends in
influenza and other infectious diseases, addressing specific
forecasting needs by engaging decision-makers and re-
searchers in real-world forecasting scenarios (Table 1).
These challenges provide participants experience in real-
time forecasting, as well as experience in communicating
results to public health practitioners. These challenges
also offer a unique opportunity to evaluate forecast per-
formance across different targets, seasons, geographic lo-
cations, and methods. Results from this evaluation enable
researchers to prioritize future lines of inquiry and help
decision-makers understand the strengths and limitations
of current forecasts. These challenges are critical to devel-
oping a network of modelers capable of providing now-
casts and forecasts that public health officials can use.
The Council of State and Territorial Epidemiologists

(CSTE) began collaborating with EPI in 2017 to achieve the
following goals: improve the understanding of EPI forecast-
ing activities among state and territorial public health offi-
cials, align EPI forecasts with the needs of those officials,
and explore how forecasting can be more effectively inte-
grated into public health decision-making. To this end,
CDC and CSTE jointly host monthly workgroup meetings
to discuss forecast accuracy and validation metrics,
visualization and communication, collaboration and partner
engagement, state and local health department perspectives,
pilot projects, and other topics as they arise. Using seasonal
influenza forecasting as an example, we review in this paper
key considerations for infectious disease forecasts and les-
sons learned identified through this collaboration.

Types of models and data sources used for
forecasting
Mathematical models have long been used to study how
humans, pathogens, and other hosts interact in infectious

disease outbreaks to help identify ways to prevent or
control them [13–16]. Many of these approaches have re-
cently been adapted to generate forecasts of influenza out-
breaks [17–21]. Table 2 presents the major modeling
approaches that have been used to generate influenza out-
break forecasts.
While each approach has its own strengths and limita-

tions, they are often tailored to specific forecasting tar-
gets based on the types of data that are available (Fig. 1).

FLUSIGHT: influenza forecasting challenges
Human influenza – both seasonal and pandemic – is a
major public health issue due to the continued emer-
gence of novel genetic strains [22, 23]. Influenza causes
substantial health and economic burden in the United
States [24, 25], but the magnitude and timing of influ-
enza seasons vary from year to year [26–29], making the
annual impact difficult to predict at the beginning of
each season. CDC/ID began working in 2013 to advance
influenza disease forecasting efforts by engaging mem-
bers of the scientific community who were already devel-
oping methods to predict influenza activity [30]. This
collaboration launched with the “Predict the Influenza
Season Challenge” (now referred to as EPI’s “FluSight”),
a competition in which participants predicted the dy-
namics of the 2013–14 influenza season on a weekly
basis as new data became available. Every season since,
FluSight has hosted challenges to prospectively forecast
the timing, intensity, and short-term trajectory (includ-
ing nowcasts) of influenza-like illness (ILI) activity in the
United States and the 10 Health and Human Service Re-
gions [31] at weekly increments [32, 33]. The challenges
run for one full influenza season, from late October/
early November to mid-May of the next year. For ex-
ample, the 2018–19 season challenge began October 29,
2018 and ended May 13, 2019. Starting in the 2017–18
influenza season, FluSight has also hosted pilots of fore-
casts of ILI at the state level and forecasts for confirmed
influenza hospitalizations at the national level based on
data from the Influenza Hospitalization Surveillance
Network (FluSurv-NET). Since the 2015–16 influenza
season, EPI has posted the real-time influenza forecasts
online [12]. The intent of FluSight is to better equip
stakeholders to produce and use forecasts to guide pub-
lic health decisions during influenza seasons and help in-
form forecasting in the event of an influenza pandemic.

Forecast targets
Forecast targets are the outcomes being predicted. Flu-
Sight ILI national, regional, and state targets are currently
based on data from the CDC’s U.S. Outpatient Influenza-
like Illness Surveillance Network (ILINet), which includes
data from the 1997–98 season to the present [34].
Currently, ILINet comprises more than 3500 enrolled
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outpatient healthcare providers around the country. Each
week, approximately 2200 of these providers report data
to CDC on the number of patients with ILI and the total
number of patients seen in their practices [35]. While the
representativeness and timeliness of ILINet data can vary
by location across the United States and over time within
the same location, ILINet has shown itself to be a useful
indicator of influenza season timing and intensity, and is
appropriate for national-level users and may be appropri-
ate for state and local-level users. It also has the advantage
of comprising a robust amount of historic data from
which forecasters can draw upon.

Forecast targets should have specific quantitative defi-
nitions and be selected to address specific public health
needs. For example, the current FluSight forecast targets
include both seasonal and short-term targets, which are
chosen to help public health officials understand the
characteristics of the current influenza season relative to
previous ones (Table 1, Fig. 2). The seasonal targets are
onset, peak week, and peak intensity. For FluSight, these
definitions rely on the ILINet percentage of visits for ILI,
weighted by state population. Baseline ILI is determined
by calculating the mean percentage of patient visits for
ILI during non-influenza weeks for the previous three

Table 1 Summary of Completed and Planned EPI Forecasting Challenge Designs as of August 2019

Challenge Name Health Outcome of Interest Year(s) Target(s)

Predict the Influenza Season
Challenge

ILI in the United States at the
national/regional level

2013–14 Season onset, peak week, peak
intensity, season duration

FluSight 2014–15 ILI in the United States at the
national/regional level

2014–15 Season onset, peak week, peak
intensity, weekly ILI percent 1–4
weeks ahead

Dengue Forecasting Project Dengue cases in Iquitos, Peru and
San Juan, Puerto Rico

2015 Timing of peak incidence, maximum
weekly incidence, total number of
cases in a transmission season

FluSight 2015–16 ILI in the United States at the
national/regional level

2015–16 Season onset, peak week, peak
intensity, weekly ILI percent 1–4
weeks ahead

FluSight 2016–17 ILI in the United States at the
national/regional level

2016–17 Season onset, peak week, peak
intensity, weekly ILI percent 1–4
weeks ahead

FluSight 2017–18 ILI in the United States at the
national/regional level

2017–18 Season onset, peak week, peak
intensity, weekly ILI percent 1–4
weeks ahead

State FluSight 2017–18 ILI in the United States at the state/
territory level

2017–18 Peak week, peak intensity, weekly ILI
percent 1–4 weeks ahead

Influenza Hospitalizations 2017–18 Influenza hospitalizations in the
United States

2017–18 Peak week, peek weekly
hospitalization rate, weekly
hospitalization rates 1–4 weeks
ahead

FluSight 2018–19 ILI in the United States at the
national/regional level

2018–19 Season onset, peak week, peak
intensity, weekly ILI percent 1–4
weeks ahead

State FluSight 2018–19 ILI in the United States at the state/
territory level

2018–19 Peak week, peak intensity, weekly ILI
percent 1–4 weeks ahead

Influenza Hospitalizations 2018–19 Influenza hospitalizations in the
United States

2018–19 Peak week, peek weekly
hospitalization rate, weekly
hospitalization rates 1–4 weeks
ahead

Aedes Challenge 2019 Aedes aegypti or Ae. Albopictus
(vectors of chikungunya, dengue,
yellow fever, and Zika viruses)

2019 Monthly presence of Aedes aegypti or
Ae. albopictus

FluSight 2019–20 ILI in the United States at the
national/regional level

2019–20
(future)

Season onset, peak week, peak
intensity, weekly ILI percent 1–4
weeks ahead

State FluSight 2019–20 ILI in the United States at the state/
territory level

2019–20
(future)

Peak week, peak intensity, weekly ILI
percent 1–4 weeks ahead

Influenza Hospitalizations 2019–20 Influenza hospitalizations in the
United States

2019–20
(future)

Peak week, peek weekly hospitalization
rate, weekly hospitalization rates 1–4
weeks ahead
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seasons and adding two standard deviations [35]. When
the ILINet percentage exceeds baseline, influenza is
likely circulating in the population [37]. Therefore, the
season onset target is defined as the first week in the
season when the weighted ILINet percentage is at or
above baseline and remains above baseline for at least
two additional weeks. Peak week is the week when the
weighted ILINet percentage is the highest, and the peak
intensity is the highest value that the weighted ILINet
percentage reaches during the season. Short-term targets
are forecasts of the weighted ILI percentage one, two,
three, and four weeks in advance of its publication. Due
to the delay in reporting (e.g., data for week 50 are pub-
lished in week 51 and forecasts using those data are
made in week 52), the 1-week ahead target forecasts the
ILI percentage for the previous week (a hindcast); the 2-

weeks ahead target forecasts the ILI percentage for the
present week (a nowcast); and the 3-weeks and 4-weeks
ahead target forecast the ILI percentage one week and
two weeks in the future respectively.

Forecast evaluation
Measuring the accuracy of infectious disease forecasts is
critical for their applications in public health. Metrics
for assessing accuracy often focus on error, which is the
difference between a predicted outcome and the ob-
served outcome [38]. Error-based metrics are attractive
because they can be framed in the scale of the target
(e.g., the predicted peak week was one week before the
observed peak week). However, measuring accuracy in
this way neglects a critical aspect of forecasts, which is
the confidence (or probability) that the forecast places

Fig. 1 The use of trade names is for identification only and does not imply endorsement by the Centers for Disease Control and Prevention
and/or the Council for State and Territorial Epidemiologists
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on being correct. Forecasts with confidence measures
provide the public health decision-maker a more useful
product [39]. For example, weather forecasts ascribe
confidence when they provide a daily probability of rain.
FluSight evaluates forecasts as a set of probabilities of

all the different possible outcomes. For example, timing
of the peak of seasonal influenza could happen during
any week of the year [36]. Forecasts, therefore, specify
the probability of the peak occurring in each week (e.g.,
the probability of the peak occurring in Week 3 is 0.2,
or a 20% chance), and forecasts follow the rules of a
probability distribution. For example, a probability of 0.1
for Week 1, 0.7 for Week 2, and 0.2 for Week 3 indicates
that there is a 100% chance of the peak between Weeks
1–3, and no chance of the peak occurring before Week
1 or after Week 3.
FluSight also evaluates forecast calibration. Calibration

is an indicator of reliability in assigning probabilities and
refers to the agreement between observed outcomes and
predictions [40]. For example, when a forecast says there
is a 0.2 probability (i.e., 20% chance) of rain, it should
rain approximately 20% of the days when similar atmos-
pheric conditions occur. To evaluate calibration, Flu-
Sight groups forecasts by probabilities (e.g., those with a
probability of 0.1 to 0.2 or 10–20%) and assesses how
often those forecasts were correct. Although both high
and low probability forecasts can be useful (e.g., there is
a 10% chance that the peak will occur next week), all
forecasts need to be well calibrated.
When determining the best forecasting model, Flu-

Sight limits its evaluations to those forecasts produced
during critical periods of the influenza season. For ex-
ample, the evaluation period for season onset is the first

week of the challenge through six weeks after the ob-
served onset week. This evaluation period varies by fore-
casting target and geographic region, representing the
weeks when the forecasts are most useful. FluSight com-
pares forecasts by taking the logarithm of the probability
assigned to values within a window containing the even-
tually observed outcome. This value is called the loga-
rithmic score and, when averaged across various
forecasts (e.g., weeks, targets, and geographic regions),
indicates which set of forecasts provided the highest
confidence in the true outcome [41]. FluSight converts
the logarithmic score to a “forecast skill” metric by expo-
nentiating the average logarithmic score. Forecast skill
indicates the average probability assigned to the ob-
served outcome and is on a scale of 0 to 1. For example,
a skill of 0.7 indicates a set of forecasts, on average,
assigned a 0.7 probability of occurrence to the probabil-
ity bin containing the observed outcome during the
evaluation period. Forecast skill is the key metric for
evaluating overall forecast accuracy and is calculated
after the evaluation period has concluded and the true
target value has been observed. As the FluSight chal-
lenge evolved, organizers at CDC implemented this
“moving window” score to achieve a balance between
“strictly proper scoring and high resolution binning (e.g.
at 0.1% increments for ILI values) versus the need for
coarser categorizations for communication and decision-
making purposes” [42].
FluSight does not currently use any threshold for fore-

cast skill when considering whether a forecast is useful
because forecast skill depends on the forecast target,
geographic scale, and the decision context. Instead, Flu-
Sight forecasts are compared to each other, as well as to

Fig. 2 The Morbidity and Mortality Weekly Report (MMWR) week is the week of the epidemiologic year for which the National Notifiable Diseases
Surveillance System (NNDSS) disease report is assigned by the reporting local or state health department for the purposes of disease incidence
reporting and publishing [36]. Values range from 1 to 53, although most years consist of 52 weeks. The weeks shown in the figure above are for
example only, as MMWR weeks and corresponding calendar date may shift year to year

Lutz et al. BMC Public Health         (2019) 19:1659 Page 6 of 12



a historic average forecast. The historic average forecast
only uses ILINet data from previous seasons, providing a
surveillance benchmark to place forecast accuracy into
context. Quantifying the accuracy of forecasts and com-
paring them is critical for acceptance, as historical per-
formance provides an evidence base for decision-makers
who may use those forecasts in the future. Accuracy can
vary systematically by season, region, and target type.
Therefore, data should be available from multiple sea-
sons with different characteristics (e.g., early vs. late on-
set, high vs. low severity, one type/subtype vs. another),
multiple geographic areas, and be stratified by target.
Importantly, forecast accuracy may be lower in atypical
seasons when historical data are less relevant, for ex-
ample, during high severity seasons or seasons with a
late peak.

Results from FLUSIGHT challenges: 2013–14
through 2017–18 seasons
The majority of participants in the FluSight challenges
used a combination of historical influenza data, Twitter,
Google Flu Trends, and weather data sources to inform
their models; approximately half of the forecasts employed
statistical methods and half employed mechanistic models
(e.g., compartmental models) [30, 32, 33, 43, 44]. Table 3
summarizes the results of the 2013–14 [30], 2014–15 [32],
2015–16 [33], 2016–17 [43, 44], and 2017–18 [43, 44]
challenges; results from the 2016–17 and 2017–18 chal-
lenges have not been published, and results from 2018 to
19 are still being evaluated as of August 2019. Overall, sea-
sonal forecasts tended to see improvements in forecast
skill as the season progressed closer to when the true tar-
gets were observed. Short-term prediction skills and the
accuracy of point forecasts were highest for one-week
ahead forecasts and declined for the two-, three-, and

four-week ahead forecasts. Short-term skills also declined
around the period of peak influenza activity. During the
2013–14 challenge, forecast evaluation was qualitative. In
2014–15, FluSight introduced the logarithmic scoring rule
to quantify forecast skill; it was modified and finalized
prior to the start of the 2015–16 challenge and has been
implemented every season since. The same team had the
highest overall forecast skill for the 2014–15 through
2017–18 seasons (Table 3) [45]. Moreover, ensemble
models, either submitted by teams or created as an aver-
age of all submitted forecasts, consistently outperformed
both individual model forecasts and forecasts based on
historical patterns alone.

Applications of forecasting for public health
decision-making
Preparation for and response to disease outbreaks and
epidemics are essential public health functions; yet
decision-makers often do not have a standardized and
validated way to assess when and where increases in dis-
ease will occur, how long they will last, or when they will
resolve. From disease control to recovery activities, ac-
tions taken during a response rely on decisions made
along a spectrum of short- to long-term planning hori-
zons. Forecasting could support this spectrum, and the
annual FluSight challenges demonstrate great potential
for applying these forecasts in real-world settings [12].
For example, forecasts are currently used to inform
CDC’s routine influenza season risk communication
talking points provided to partners, weekly summaries
presented to CDC leadership, and public messaging re-
garding the timing of the influenza season and how the
public can protect themselves and their families [45, 46].
In addition, weekly forecasts are distributed to state and
local public health officials in real-time during the

Table 3 Summary of results from the FluSight influenza forecast challenges*

2013–14 season 2014–15 season 2015–16 season 2016–17 season 2017–18 season

Number of participating teams 9 5 11 21 22

Number of submitted forecasts† 13 7 14 28 29

Season onset top skill N/A** 0.41 0.18 0.78 0.69

Peak week top skill N/A 0.49 0.20 0.49 0.50

Peak intensity top skill N/A 0.17 0.66 0.36 0.26

1-week ahead top skill N/A 0.43 0.89 0.60 0.54

2-weeks ahead top skill N/A 0.36 0.76 0.46 0.37

3-weeks ahead top skill N/A 0.37 0.66 0.41 0.29

4-weeks ahead top skill N/A 0.35 0.58 0.38 0.26

Overall top performing team Columbia University Delphi group,
Carnegie Mellon
University

Delphi group,
Carnegie Mellon
University

Delphi group,
Carnegie Mellon
University

Delphi group,
Carnegie Mellon
University

*Skill scores for 2016–17 and 2017–18 challenges have not been published. Results from 2018 to 19 challenge are not complete as of August 2019
†Number of submitted forecasts do not include the unweighted average ensemble or historical average forecasts
**The logarithmic scoring rule used to determine forecast skill scores was not introduced until the second year of the challenge (2014–15). Skill scores for the
challenge pilot (2013–14) are therefore not available
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challenges through CSTE/CDC Forecasting Workgroup
emails and monthly conference calls. During these calls,
CDC, CSTE, state and local public health officials, and
forecasters discuss forecast results, utility, and methods
to improve forecast visualization and communication.
The potential uses of infectious disease forecasts

extend beyond communication, both in seasonal and
emergency situations. Forecasts could provide informa-
tion useful for risk management, such as informing mes-
sages to healthcare providers (including hospitals)
regarding appropriate treatment for patients (e.g. anti-
viral treatment in the case of influenza). Forecasts could
also aid in preparation for surge capacity and hospital
resource management by anticipating staffing needs and
resource usage, potentially guiding the allocation and de-
ployment of human resources and treatment inventory.
Finally, forecasts could guide community mitigation
strategies, such as school closures during pandemics.
While public health emergencies and pandemics may be
fundamentally different from annual influenza seasons
and seasonal forecast accuracy may not be a predictor of
pandemic forecast accuracy, the FluSight challenges have
helped develop a network of modelers more capable of
providing nowcasts and forecasts that public health offi-
cials can use during a future pandemic.
Although quantitative data on forecast use is limited

to the abovementioned examples, CDC and CSTE are

collaborating on additional ongoing projects to identify,
evaluate, and quantify how the FluSight forecast results
are being utilized by stakeholders (e.g., state influenza
coordinators).

Communication strategies
Forecasts could be a valuable resource for infectious disease
outbreak preparation and response. However, this vision
not only requires accurate forecasts but also effective com-
munication tools such that key stakeholders – e.g., public
health officials, healthcare providers, the media, and the
public – can interpret, understand, and act quickly and ap-
propriately. Therefore, the utility of a forecast (even a per-
fectly accurate one) is directly tied to how successful the
forecasters and epidemiologists are at communicating
methodology and interpretations, including forecast confi-
dence and uncertainty. One method for communicating in-
formation to end users that has increased in popularity is
data visualization tools [47]. An example of one of the
current methods of presenting outputs from the 2018–19
FluSight Challenge is presented in Fig. 3. Additionally, con-
sistent dialogue, preferably occurring outside of emergency
conditions, should address how to appropriately interpret
forecasting information, as well as the strengths and limita-
tions of forecasting in general. Dialogue is essential to keep
decision-makers informed and to ensure that forecast prod-
ucts are designed to support public health activities.

Fig. 3 Predictions for national ILI percentage published for Week 52 through Week 3 (1-, 2-, 3-, and 4-weeks ahead, respectively) and associated
80% prediction interval
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Multiple efforts have been undertaken to improve
forecast communication with stakeholders. A recent
analysis by IQT Labs, in collaboration with CDC/ID,
found that in communicating forecast results, there is a
need to strike the balance between the number of fore-
casts presented and representing forecast uncertainty
and confidence in a way that is both accurate and clear
to the user [47]. This work has the potential to help
identify best practices for visualizing forecast data and
provide a framework for approaching future communi-
cations and visualization efforts. However, work is still
ongoing in this area and clear recommendations are not
yet available. To this end, CDC has established two on-
going research projects. The first is a CSTE/CDC fore-
casting data visualization project to identify best
communication practices, needs of stakeholders for fore-
cast messaging, and useful communication products.
The second is the development of a network of Forecast-
ing Centers of Excellence to improve the accuracy and
communication of real-time probabilistic forecasts for
seasonal and pandemic influenza [48].

Forecasting beyond influenza
In addition to influenza forecasting, EPI has also hosted
forecasting challenges for dengue (Table 1). In tropical
areas, the incidence of dengue, a mosquito-borne viral
disease, follows seasonal transmission patterns similar to
influenza, but every few years, there are much larger epi-
demics that overwhelm health systems [49, 50]. In 2015,
several U.S. government agencies and the White House
Office of Science and Technology Policy undertook a
retrospective forecasting (i.e., forecasting past events
using data only from time periods prior to those events)
project to galvanize efforts to predict epidemics of den-
gue using the same basic framework that has been
employed for influenza [51]. Forecasting targets included
peak incidence, maximum weekly incidence, and the
total number of cases in a transmission season. Re-
searchers evaluated probabilistic forecasts using the
logarithmic score. More information about this work is
available on EPI’s website under “Dengue Forecasting
Project.”
In March 2019, EPI launched the “Aedes Forecasting

Challenge” to predict the spatiotemporal distribution of
Aedes aegypti and Ae. albopictus mosquitoes in the
United States (Table 1) [52]. This open forecasting chal-
lenge aims to predict the monthly presence of these spe-
cies in a subset of U.S. counties during the 2019
calendar year, and uses data from 95 counties in eight
states. Other opportunities to use forecasting to support
public health decision-making in the U.S. include pre-
paring for potential introduction and local transmission
of chikungunya [53] or Zika virus [54]. Forecasts indicat-
ing likely increases in risk provide evidence to public

health officials and other stakeholders to alert clinicians,
communicate with the public, and plan mosquito sur-
veillance and control activities.
Forecasting beyond influenza may focus on different

targets and will require the inclusion of different data-
sets. However, such forecasts can be easily adapted to
the EPI platform, as evidenced by the Dengue Forecast-
ing Project and Aedes Forecasting Challenge. Lessons
learned through the FluSight, dengue, and Aedes chal-
lenges, such as accuracy assessment, communication
strategies, visualization, and public health implications
will likely be broadly applicable to other infectious dis-
ease forecasts.

Limitations
Despite advantages and potential applications, there are
still a number of challenges and limitations to infectious
disease forecasting. From a methodological perspective,
each forecasting model will have its own inherent limita-
tions specific to the method being used (Table 2). Fur-
thermore, the influenza forecasting efforts described
here mainly relied on data reported through ILINet,
which captures reported cases of ILI and not laboratory-
confirmed influenza. The influenza hospitalization fore-
cast pilot launched during the 2017–18 season aims to
address this limitation by forecasting an influenza-
confirmed outcome (i.e., hospitalization). Hospitalization
forecasts may prove to be a more robust forecasting tar-
get, as FluSight has access to high quality and reliable
data regarding how hospitalized patients are identified
and captured in FluSurv-NET. In addition, even though
the United States has several established systems for
conducting influenza surveillance, data availability and
comparability limitations remain at the state and sub-
state scale [55–57], potentially limiting the development
and utility of forecasts for these jurisdictions. Similarly,
reproducing the proposed methods of forecasting for
other pathogens or countries may prove challenging if
no historic dataset exists [13]. Furthermore, despite on-
going efforts to address knowledge gaps, at present,
quantifiable data regarding how end users utilize forecast
results are not available. Finally, as forecasting science
grows and evolves, discussions regarding forecast owner-
ship, funding, and comparability of methodological ap-
proaches will be needed.

Technical support
In an effort to standardize language used in forecasting, we
developed a glossary of commonly used terms (Table 4).
Furthermore, stakeholders who wish to engage in the
CSTE/CDC Forecasting Workgroup or who have specific
requests for technical assistance should contact the CSTE/
CDC Forecasting Workgroup (forecasting@cste.org).
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Conclusions
Accurate and timely infectious disease forecasts could
inform public health responses to both seasonal epi-
demics and future pandemics by providing guidance for
the utility, scale, and timing of prevention and mitiga-
tion strategies. Since the 2013–14 influenza season, Flu-
Sight has hosted collaborative challenges to forecast the
timing, intensity, and short-term trajectory of ILI activ-
ity in the United States using data published in ILINet.
These efforts, along with other infectious disease

forecasting initiatives, can foster the continued ad-
vancement of forecasting science. Challenges and limi-
tations exist with infectious disease forecasting, but
these can be addressed through further research and
the refinement of existing tools. To this end, EPI,
CSTE, and other partners continue to work towards the
development of best practices for forecast applications,
methodology, and output communication. Despite
current limitations, forecasting is a powerful tool to aid
public health decision making.

Table 4 Glossary of terms commonly used in forecasting

Forecasting term Forecasting term definition

Ensemble model A model that incorporates two or more models into a single model.

Epidemic Prediction
Initiative

A CDC initiative launched in 2014 that aims at improving the science and usability of epidemic forecasts by facilitating
open forecasting projects with specific public health objectives.

FluSight Challenge A multi-participant competition that began during the 2013–14 influenza season (then called the “Predict the Influenza
Season Challenge”) to forecast the timing, intensity, and short-term trajectory of the influenza season.

Forecast A quantitative, probabilistic statement about an unobserved event, outcome, or trend and its surrounding uncertainty,
conditional on previously observed data.

Forecast accuracy A measurement of how well the forecast matched the outcome once it has been observed. There are a number of
ways forecast accuracy can be measured, but CDC uses the logarithmic score. For more information regarding
logarithmic score, please see the definition below.

Forecast calibration An indicator of reliability in assigning probabilities. For FluSight forecasts, calibration is evaluated by assessing how
often forecasts were correct.

Forecast confidence A characterization of the uncertainty in a forecast. The Epidemic Prediction Initiative requires that forecast confidence
be expressed as a probability (e.g., a 0.2 probability or 20% chance that the peak week of the influenza season will be
on week 2).

Hindcast Forecast of past conditions, also known as “pastcast.” For example, due to delays in reporting and data accrual, the
FluSight forecast for ILI outpatient visits “one week ahead” is actually a forecast for the previous calendar week.

ILI Influenza-like illness, fever and either a cough or sore throat.

ILINet US Outpatient Influenza-like Illness Surveillance Network; a surveillance system that accrues weekly data on the number
of patients with ILI and the total number of patients seen in healthcare settings, reported by outpatient healthcare
providers in the United States.

Logarithmic score The logarithm of the probability assigned to the observed outcome averaged across various forecasts (e.g., weeks,
targets, and geographic regions). Used to measure the accuracy of a forecast.

Nowcast Forecast of current conditions. For example, due to delays in reporting and data accrual, the FluSight forecast for ILI
outpatient visits “two weeks ahead” is actually a forecast for the current calendar week.

Onset The start of sustained disease activity. As a seasonal target for FluSight forecasts, it is defined as the first week when
the percentage of visits for ILI reported through ILINet reaches or exceeds the baseline value for three consecutive weeks.
No onset is a possible outcome.

Peak intensity The maximum weekly or monthly value that disease activity reaches. As a seasonal target for FluSight forecasts, it is
defined as the highest numeric value that the weighted ILINet percentage reaches during a season.

Peak week The week that disease activity reaches it maximum. As a seasonal target for FluSight forecasts, it is defined as the week
during the influenza season when the weighted ILINet percentage is the highest. More than one peak week is a possible
outcome.

Reliability A measure of how well the forecasted probability of an event occurring matches the observed outcome. Reliability
answers the question whether a forecast that assigns a probability of 0.2 observes the forecasted event 20% of the time.
This is also known as forecast calibration.

Retrospective forecast A forecast of a past event (e.g., past influenza or dengue seasons) using data only from time periods prior to the event.

Skill The average confidence (or probability) that was assigned to the observed outcome.

Seasonal target Forecasts for the overall influenza season characteristics. These forecasts currently include the onset week, peak week,
and peak intensity.

Short-term target Forecasts for the near-term trajectory of the influenza season. These forecasts currently include forecasts for influenza
activity one, two, three, and four weeks ahead from the date of data publication.

Target The outcome that a forecast is predicting.
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